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Has chaos implied by macrovariable equations been justified?
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The underlying microscopic dynamics of a deterministic chemical chaos predicted by phenomenological
equations is investigated in this paper. Ensemble simulation of the master equation for the chemical Lorenz
model was carried out and compared to the deterministic results. Our calculations reveal that in the chaotic
regime the mass action law description is related neither to the ensemble mean nor to the most probable values
within the ensemble. The intrinsic fluctuations in this regime also prove to be much more intensive than in
other situations. These results propose that the macrovariable equations no longer provide a correct description
of the true collective dissipative behavior in the chaotical regime, and a more microscopic description is
necessary in this circumstan¢&1063-651X98)50607-1

PACS numbegps): 05.45:+b, 05.40+j

The investigation of the passage from disordered motiomolecular fluctuations through case studies including the
at the molecular level to collective behavior at the macro-spatially distributed Brusselator and the Williamowski-
scopic level has had a long history. At the macroscopic levelRossler model. They argued that the deterministic descrip-
the dissipative processes are traditionally described by a séen in the chaotic attractor is robust towards internal noise,
of phenomenological equations. While the microscopic deand that in a statistical sense the phenomenological equations
scription of disordered molecular motion are physically morestill keep their significance. The problem has also been stud-
fundamental, the macroscopic phenomenological approach i€d by lattice gas automatd®], and quite recently9] an-
mathematically more convenient. In fact, the theoreticaPther case study was reported where intrinsic fluctuations
starting point of exploring macroscopic phenomena such a¥ere observed to have significantly altered the probablistic
pattern formation or dissipative structures has been frestructure of the chaotic attractor. _
quently a set of deterministic equatiofid. While the inves- In this Rapid Communication, we examine closely the
tigation at the macroscopic end has proved to be fruitful, it ismaster equation for the chemical Lorenz model by simulat-
often desirable to go back to examine the underlying microing it in ensembles. Our direct information of the master
scopic origins of the macroscopic phenomena. In the presefduation will show that in the chaotic regime, the macro-
paper, we concentrate our attention on a related specifigCOPIC description is no longer useful and cannot be justified
problem; that is, the microscopic dynamics of deterministicfrom the underlying mesoscopic description.
chaos implied by the phenomenological macrovariable equa- !n the chemical version of the famous Lorenz modé],
tions. the equations are interpreted as derived from the following

Although low dimensional chaos in dissipative dynamicaleaction steps:
systems has been widely investigated in nonlinear dynamics,
its microscopic origin in the particle reactive and elastic col-
lision and diffusion processes, especially its effect on intrin-
sic molecular fluctuations, have attracted attention in the past
few yearg[2—9], and have been a topic of considerable con-

ky ky
X+Y+Z—=X+2Z, A;+X+Y—=2X+Y,
k3 kg
Ao+ X+Y—-X+2Y, X+Z—X+Pyq,

troversy[3,4,7. The interest was aroused by the question ks Ke
whether intrinsic thermodynamical fluctuations, which are Y+Z-2Y, 2X— Py,
always present in real physical systems, can be amplified just k7 ks

as the external disturbance does by the deterministic chaos 2Y—Ps, 22— Py,
predicted by the macroscopic equations. Dispute has been kg kio
focused on the validity of the phenomenological equation Agt X—2X, X—Ps,
descriptions. Previous studies include Fokker-Planck equa- SH 5P
tion analyses and stochastic as well as particle simulations. Y—Peg, Ayt Y—2Y,
Specifically, Keizer and Fox analyzed the internal fluctua- ki3

tions by using the master equation formalism as well as As+Z2—-2Z,

simulations with appropriate stochastic differential equations

[2]. Their results suggested that deterministic chaotic dynamwherek; (i=1,2,...,13) are rate constants. Concentrations of
ics can amplify intrinsic fluctuations so that the macrovari-species; (i,=1,2,...,5) and®; (i=1,2,...,6) are assumed to
able equations are unstable and cannot be contracted from & constant in order to keep the system out of equilibrium.
underlying molecular description. The Brussels grfbp7]  The mass action kinetics of intermediates in the above reac-
conducted comparative studies to investigate the influence dion network is capable of yielding Lorenz strange attractors
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with positive values oK, Y,Z under appropriate reaction rate ~ Within the framework of the birth-death formulation of
parameters. The chemical Lorenz system thus provides astochastic theory, the reaction steps are assumed to form a
ideal model of chemical chaos for examining the effect ofMarkov process and the evolution of the system is described
intrinsic fluctuations on macroscopic chaos. by the following master equation:

% P(X,Y,Z,t)=Cy[X(Y+1)(Z—1)P(X,Y+1Z—1)—XYZRAX,Y,Z,t)]

+C[(X—1)YP(X—1Y,Z,H) = XYP(X,Y,Z,1)]
+C[X(Y=1)P(X,Y—-1Z,)—=XYP(X,Y,Z,1)]
+CIX(ZH1)P(X,Y,Z+11)—XZP(X,Y,Z,1)]
+Cs[(Y=1)(Z+1)P(X,Y—1Z+11)—YZP(X,Y,Z1)]

+Co[ (X+2)(X+1)P(X+2Y,Z,t) = X(X—1)P(X,Y,Z,1)]
FCL(Y+2)(Y+1)P(X,Y+2Z 1) - Y(Y=1)P(X,Y,Z,1)]
+Cg[(Z+2)(Z+1)P(X,Y,Z+21)—Z(Z—1)P(X,Y,Z,1)]
+Co[(X—1)P(X—1Y,Z,H)—XP(X,Y,Z,1)]

+Cy (X+1)P(X+1Y,Z,t) = XP(X,Y,Z,t)]
+C[(Y+1)P(X,Y+1Z,t)—YP(X,Y,Z,1)]

+C [ (Y-1)P(X,Y=1Z,t)~YP(X,Y,Z,1)]
+C{(Z-1)P(X,Y,Z—11)—ZP(X,Y,Z,1)], 1)

where C; (i,1,2,...,13) are microscopic reaction constantsthe vicinity of a stable fixed state. They agree very well with
having incorporated the constant particle numbers of speciemne of the others when approaching uniformly to the com-
A; (i=1,2,...,5). The master equation provides a descriptiormon goal. Owing to the limited size of the ensemble, the
of the reaction processes at a more microscopic level antorbit” of the most probable value is of zigzag. It should be
serves as a suitable starting point for examing the microa smoother curve if the ensemble is sufficiently large. In this
scopic behavior of deterministic chemical chaos. Equatiortase, the internal noise seems to have a trivial effect. When
(1) is rather complex and not suitable for analytical solution.the mass action law predicted a limit cycle, intrinsic noise
An efficient way to solve the chemical master equation is toexhibited considerable influence. The simulated orbit takes
simulate it directly by applying the standard algorithm origi- on a thick structure and situates in the neighborhood of the
nally developed by Gillespigl1]. For our purpose, we car- well defined deterministic periodic orbit. In the chaotic re-
ried out a direct stochastic simulation of the Markovian tran-gime where the mass action law predicts chaotic attractors,
sition processes of the reacting system in an ensemble. THbe macroscopic description becomes even worse. Figure 2
ensemble was created by assigning each run in it same initiglepicts the sharp contrast of the deterministic chaotic attrac-
particle numbers of specie§Y,Z respectively and different tor with the mean and the most probable values of simula-
seeds for the random number generator. When the evolutiotion. The simulated orbits of the mean and the most probable
proceeds, guantities of physical significance in the mastevalues are approximately in accordance with each other;
equation such as the average value, the mean squared devimwever, they do not evolve into a Lorenz strange attractor
tion, and other various variances can be readily calculated ias implied by the mass action law but tend to approach a
the ensemble. The most probable values of the species camall attracting volume in the phase space. The phenomeno-
also be calculated. logical equations no longer provide a correct collective de-

We compared the deterministic dynamics of mass actioscription of the underlying chemical Markovian transition
law such as stable fixed points, limit cycles, and chaotigprocesses. They describe neither the mean nor the most prob-
attractors with their counterparts of stochastic simulation. I&@ble values of the ensemble. Figure 3 shows the time evolu-
was found that the phenomenological mass action kineticion of the mean squared deviations of simulation for a de-
can satisfactorily describe the collective behavior of the reterministic fixed point and that for a chaotic attractor is
action processes in the neighborhood of stable fixed pointdisplayed in Fig. 4. These fluctuations grow rapidly, and af-
and keeps its full validity. Figure 1 shows the “orbits” of ter a transient period reach final saturation. The initial rapid
the deterministic, the mean, and the most probable values igrowth is due to the initial Dira& condition for the prob-
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FIG. 1. Comparison between the result of rate law and that of
the master equation in the neighborhood of a stable fixed point. The FIG. 2. Phenomenological result and its microscopic analog in
deterministic orbit(a) agrees perfectly well with the medh) and  the chaotic regime. The deterministic chaotic traject@ypredicts
the most probable value) of stochastic simulation. Reaction pa- nheither the meaib) nor the most probable value) of simulation.
rameters are;=0.0004,c,=0.2, c3=0.03, ¢,=2.0, c5=2.0, Cq Parameters are the same with Fig. 1 except that0.58 andc,;
=0.1, ¢;=0.01, cg=0.267,ce= 1000, c;= 1000, c;;= 150.0,c,,  =2900.0.
=100.0,c,5=10002.67.

other situations. These results proposed that the deterministic
ability P(X,Y,Z,t). The plateau for the deterministic chaos description is invalid in the chaotic regime. Its significance is
is obviously much higher than that for the fixed stable point.fully preserved only in the neighborhood of stable fixed
Its intensity is approximately two times that of the fixed points. Even in the periodic regime, the deterministic predic-
point. tion is unsatisfactory.

Our calculations and comparison of the behavior pre- Compared to previous studies with this problem, our find-
dicted by the phenomenological description and its mesoshngs are consistent with those reported by Fox and co-
copic analog from the master equation has shown that therorkers [2] who used the master equation formalism and
deterministic law is no longer useful in predicting the aver-simulations with proper stochastic differential equations as
age and the most probable particle number when the detewell. The results presented here confirm their general con-
ministic chaos shows up. The fluctuations in the chaotic reelusion of the invalidity of the phenomenological equations
gime have also proved to be much more intensive than iin the regime of deterministic chaos. The effect of molecular
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lation in the chaotic regime. The fluctuation fr species is ap-
FIG. 3. Time evolution of the mean squared deviation from proximately two times that in the fixed point regintgee Fig. 3.
simulation forX species in the condition where mass action kineticsFor calculation of the deviation, 1000 runs were used.
predicts a stable fixed point. The ensemble consists of 1000 simu-

lation runs. master equation for the chemical Lorenz model was carried
out within a large ensemble, and much more significant
fluctgations on o.ther chemical chaos models have alsp beeﬂ}operties such as the mean and the most probable value,
previously investigated by stochastf6] as well as reactive \ypjich is important for evaluating the relevance of the mac-
lattice gas automatof8] and particle simulationg7]. How- 4 ariable equations, were obtained. From our calculations,

ever, these researches were limited in the comparison of the . pe reasonably concluded that in the chaotic regime the

girr?plirtrlﬁf] gl?tg:c?;?a;?c ';?#Sg:?olncgf?gg ;:gﬁgtro;y ua;t(ijon acrovariables and individual chaotic trajectories of the phe-
9 . . o L d homenological description are no longer useful. The macro-
The more detailed microscopic information in the master

equation was ignored. In the Wiliamowski-Bsler model scopic equations may still keep some relevance in providing
! Some useful information about the bifurcation sequence

common statistical properties with their analog of a single™Vhen the system parameters are varied. When the determin-

simulation run. This, however, does not generally apply tgstic chaos shows up, a microscopic or at least mesoscopic
other systems. An opposite example is the chemical Lorendlescription is necessary in order to describe the true behavior
model as reported in Ref9]. Our direct simulation of the ©f the process.
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