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Has chaos implied by macrovariable equations been justified?
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The underlying microscopic dynamics of a deterministic chemical chaos predicted by phenomenological
equations is investigated in this paper. Ensemble simulation of the master equation for the chemical Lorenz
model was carried out and compared to the deterministic results. Our calculations reveal that in the chaotic
regime the mass action law description is related neither to the ensemble mean nor to the most probable values
within the ensemble. The intrinsic fluctuations in this regime also prove to be much more intensive than in
other situations. These results propose that the macrovariable equations no longer provide a correct description
of the true collective dissipative behavior in the chaotical regime, and a more microscopic description is
necessary in this circumstance.@S1063-651X~98!50607-1#

PACS number~s!: 05.45.1b, 05.40.1j
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The investigation of the passage from disordered mo
at the molecular level to collective behavior at the mac
scopic level has had a long history. At the macroscopic le
the dissipative processes are traditionally described by a
of phenomenological equations. While the microscopic
scription of disordered molecular motion are physically mo
fundamental, the macroscopic phenomenological approa
mathematically more convenient. In fact, the theoreti
starting point of exploring macroscopic phenomena such
pattern formation or dissipative structures has been
quently a set of deterministic equations@1#. While the inves-
tigation at the macroscopic end has proved to be fruitful, i
often desirable to go back to examine the underlying mic
scopic origins of the macroscopic phenomena. In the pre
paper, we concentrate our attention on a related spe
problem; that is, the microscopic dynamics of determinis
chaos implied by the phenomenological macrovariable eq
tions.

Although low dimensional chaos in dissipative dynamic
systems has been widely investigated in nonlinear dynam
its microscopic origin in the particle reactive and elastic c
lision and diffusion processes, especially its effect on intr
sic molecular fluctuations, have attracted attention in the p
few years@2–9#, and have been a topic of considerable co
troversy @3,4,7#. The interest was aroused by the quest
whether intrinsic thermodynamical fluctuations, which a
always present in real physical systems, can be amplified
as the external disturbance does by the deterministic ch
predicted by the macroscopic equations. Dispute has b
focused on the validity of the phenomenological equat
descriptions. Previous studies include Fokker-Planck eq
tion analyses and stochastic as well as particle simulati
Specifically, Keizer and Fox analyzed the internal fluctu
tions by using the master equation formalism as well
simulations with appropriate stochastic differential equatio
@2#. Their results suggested that deterministic chaotic dyn
ics can amplify intrinsic fluctuations so that the macrova
able equations are unstable and cannot be contracted fro
underlying molecular description. The Brussels group@5–7#
conducted comparative studies to investigate the influenc
PRE 581063-651X/98/58~2!/1191~4!/$15.00
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molecular fluctuations through case studies including
spatially distributed Brusselator and the Williamowsk
Rössler model. They argued that the deterministic desc
tion in the chaotic attractor is robust towards internal noi
and that in a statistical sense the phenomenological equa
still keep their significance. The problem has also been s
ied by lattice gas automaton@8#, and quite recently@9# an-
other case study was reported where intrinsic fluctuati
were observed to have significantly altered the probabli
structure of the chaotic attractor.

In this Rapid Communication, we examine closely t
master equation for the chemical Lorenz model by simu
ing it in ensembles. Our direct information of the mas
equation will show that in the chaotic regime, the mac
scopic description is no longer useful and cannot be justi
from the underlying mesoscopic description.

In the chemical version of the famous Lorenz model@10#,
the equations are interpreted as derived from the follow
reaction steps:

X1Y1Z→
k1

X12Z, A11X1Y→
k2

2X1Y,

A21X1Y→
k3

X12Y, X1Z→
k4

X1P1 ,

Y1Z→
k5

2Y, 2X→
k6

P2 ,

2Y→
k7

P3 , 2Z→
k8

P4 ,

A31X→
k9

2X, X→
k10

P5 ,

Y→
k11

P6 , A41Y→
k12

2Y,

A51Z→
k13

2Z,

whereki ( i 51,2,...,13) are rate constants. Concentrations
speciesAi ( i ,51,2,...,5) andPi ( i 51,2,...,6) are assumed t
be constant in order to keep the system out of equilibriu
The mass action kinetics of intermediates in the above re
tion network is capable of yielding Lorenz strange attract
R1191 © 1998 The American Physical Society
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with positive values ofX,Y,Z under appropriate reaction ra
parameters. The chemical Lorenz system thus provides
ideal model of chemical chaos for examining the effect
intrinsic fluctuations on macroscopic chaos.
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Within the framework of the birth-death formulation o
stochastic theory, the reaction steps are assumed to fo
Markov process and the evolution of the system is descri
by the following master equation:
]

]t
P~X,Y,Z,t !5C1@X~Y11!~Z21!P~X,Y11,Z21,t !2XYZP~X,Y,Z,t !#

1C2@~X21!Y P~X21,Y,Z,t !2XY P~X,Y,Z,t !#

1C3@X~Y21!P~X,Y21,Z,t !2XY P~X,Y,Z,t !#

1C4@X~Z11!P~X,Y,Z11,t !2XZP~X,Y,Z,t !#

1C5@~Y21!~Z11!P~X,Y21,Z11,t !2YZP~X,Y,Z,t !#

1C6@~X12!~X11!P~X12,Y,Z,t !2X~X21!P~X,Y,Z,t !#

1C7@~Y12!~Y11!P~X,Y12,Z,t !2Y~Y21!P~X,Y,Z,t !#

1C8@~Z12!~Z11!P~X,Y,Z12,t !2Z~Z21!P~X,Y,Z,t !#

1C9@~X21!P~X21,Y,Z,t !2XP~X,Y,Z,t !#

1C10@~X11!P~X11,Y,Z,t !2XP~X,Y,Z,t !#

1C11@~Y11!P~X,Y11,Z,t !2Y P~X,Y,Z,t !#

1C12@~Y21!P~X,Y21,Z,t !2Y P~X,Y,Z,t !#

1C13@~Z21!P~X,Y,Z21,t !2ZP~X,Y,Z,t !#, ~1!
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where Ci ( i ,1,2,...,13) are microscopic reaction consta
having incorporated the constant particle numbers of spe
Ai ( i 51,2,...,5). The master equation provides a descrip
of the reaction processes at a more microscopic level
serves as a suitable starting point for examing the mic
scopic behavior of deterministic chemical chaos. Equat
~1! is rather complex and not suitable for analytical solutio
An efficient way to solve the chemical master equation is
simulate it directly by applying the standard algorithm orig
nally developed by Gillespie@11#. For our purpose, we car
ried out a direct stochastic simulation of the Markovian tra
sition processes of the reacting system in an ensemble.
ensemble was created by assigning each run in it same in
particle numbers of speciesX,Y,Z respectively and differen
seeds for the random number generator. When the evolu
proceeds, quantities of physical significance in the ma
equation such as the average value, the mean squared d
tion, and other various variances can be readily calculate
the ensemble. The most probable values of the species
also be calculated.

We compared the deterministic dynamics of mass ac
law such as stable fixed points, limit cycles, and chao
attractors with their counterparts of stochastic simulation
was found that the phenomenological mass action kine
can satisfactorily describe the collective behavior of the
action processes in the neighborhood of stable fixed po
and keeps its full validity. Figure 1 shows the ‘‘orbits’’ o
the deterministic, the mean, and the most probable value
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the vicinity of a stable fixed state. They agree very well w
one of the others when approaching uniformly to the co
mon goal. Owing to the limited size of the ensemble, t
‘‘orbit’’ of the most probable value is of zigzag. It should b
a smoother curve if the ensemble is sufficiently large. In t
case, the internal noise seems to have a trivial effect. W
the mass action law predicted a limit cycle, intrinsic noi
exhibited considerable influence. The simulated orbit ta
on a thick structure and situates in the neighborhood of
well defined deterministic periodic orbit. In the chaotic r
gime where the mass action law predicts chaotic attract
the macroscopic description becomes even worse. Figu
depicts the sharp contrast of the deterministic chaotic att
tor with the mean and the most probable values of simu
tion. The simulated orbits of the mean and the most proba
values are approximately in accordance with each oth
however, they do not evolve into a Lorenz strange attrac
as implied by the mass action law but tend to approac
small attracting volume in the phase space. The phenom
logical equations no longer provide a correct collective d
scription of the underlying chemical Markovian transitio
processes. They describe neither the mean nor the most p
able values of the ensemble. Figure 3 shows the time ev
tion of the mean squared deviations of simulation for a
terministic fixed point and that for a chaotic attractor
displayed in Fig. 4. These fluctuations grow rapidly, and
ter a transient period reach final saturation. The initial ra
growth is due to the initial Dirac-d condition for the prob-
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ability P(X,Y,Z,t). The plateau for the deterministic chao
is obviously much higher than that for the fixed stable po
Its intensity is approximately two times that of the fixe
point.

Our calculations and comparison of the behavior p
dicted by the phenomenological description and its mes
copic analog from the master equation has shown that
deterministic law is no longer useful in predicting the av
age and the most probable particle number when the de
ministic chaos shows up. The fluctuations in the chaotic
gime have also proved to be much more intensive than

FIG. 1. Comparison between the result of rate law and tha
the master equation in the neighborhood of a stable fixed point.
deterministic orbit~a! agrees perfectly well with the mean~b! and
the most probable value~c! of stochastic simulation. Reaction pa
rameters arec150.0004,c250.2, c350.03, c452.0, c552.0, c6

50.1, c750.01, c850.267,c951000, c1051000, c115150.0,c12

5100.0,c13510 002.67.
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other situations. These results proposed that the determin
description is invalid in the chaotic regime. Its significance
fully preserved only in the neighborhood of stable fix
points. Even in the periodic regime, the deterministic pred
tion is unsatisfactory.

Compared to previous studies with this problem, our fin
ings are consistent with those reported by Fox and
workers @2# who used the master equation formalism a
simulations with proper stochastic differential equations
well. The results presented here confirm their general c
clusion of the invalidity of the phenomenological equatio
in the regime of deterministic chaos. The effect of molecu

f
e FIG. 2. Phenomenological result and its microscopic analog
the chaotic regime. The deterministic chaotic trajectory~a! predicts
neither the mean~b! nor the most probable value~c! of simulation.
Parameters are the same with Fig. 1 except thatc350.58 andc11

52900.0.
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fluctuations on other chemical chaos models have also b
previously investigated by stochastic@5,6# as well as reactive
lattice gas automaton@8# and particle simulations@7#. How-
ever, these researches were limited in the comparison o
properties between an individual chaotic trajectory and
single run of stochastic simulation of the master equati
The more detailed microscopic information in the mas
equation was ignored. In the Williamowski-Ro¨ssler model,
chaotic attractors of deterministic law really share so
common statistical properties with their analog of a sin
simulation run. This, however, does not generally apply
other systems. An opposite example is the chemical Lor
model as reported in Ref.@9#. Our direct simulation of the

FIG. 3. Time evolution of the mean squared deviation fro
simulation forX species in the condition where mass action kinet
predicts a stable fixed point. The ensemble consists of 1000 s
lation runs.
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master equation for the chemical Lorenz model was car
out within a large ensemble, and much more signific
properties such as the mean and the most probable va
which is important for evaluating the relevance of the ma
rovariable equations, were obtained. From our calculatio
it can be reasonably concluded that in the chaotic regime
macrovariables and individual chaotic trajectories of the p
nomenological description are no longer useful. The mac
scopic equations may still keep some relevance in provid
some useful information about the bifurcation sequen
when the system parameters are varied. When the deter
istic chaos shows up, a microscopic or at least mesosc
description is necessary in order to describe the true beha
of the process.

s
u-

FIG. 4. Time evolution of the mean squared deviation of sim
lation in the chaotic regime. The fluctuation forX species is ap-
proximately two times that in the fixed point regime~see Fig. 3!.
For calculation of the deviation, 1000 runs were used.
m.
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